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Abstract.  

Daily Fire Weather Index (FWI) System components calculated from the NASA he Modern-Era Retrospective 

Analysis for Research and Applications version 2 (MERRA2) are compared to FWI calculations from a global 

network of weather stations over 2004-2018, and short-term, experimental (8-day) daily FWI forecasts are evaluated 10 

for their skill across the Terrestrial Ecoregions of the World for 2018. FWI components from MERRA2 were, in 

general, biased low compared to station data, but this reflects a mix of coherent low and high biases of different 

magnitudes. Biases in different MERRA2 FWI components were related to different biases in weather input 

variables for different regions, but temperature and relative humidity biases were the most important overall. FWI 

forecasts had high skill for 1-2 day lead times for most of the world. For longer lead-times, forecast skill decreased 15 

most quickly at high latitudes, and was most closely related to decreasing skill of relative humidity forecasts. These 

results provide a baseline for the evaluation and use of fire weather products calculated from global analysis and 

forecast fields.  

1 Introduction 

The Fire Weather Index (FWI) System is most commonly used fire danger rating system around the world (de Groot 20 

and Flannigan, 2014;de Groot et al., 2015). Three moisture codes track the moisture content of litter and forest floor 

moisture content rather than live fuel moisture, and for all codes, increasing values indicate decreasing moisture 

content. The Fine Fuel Moisture Code (FFMC) captures changes in the moisture content of fine fuels and leaf litter 

on the forest floor, where fires can most easily start, and is calculated temperature, relative humidity, precipitation 

and wind speed as inputs. The Duff Moisture Code (DMC) captures the moisture content of loosely compacted 25 

forest floor organic matter, and the moisture content of dead, medium-size fuels on the forest floor. The DMC is 

calculated from temperature, relative humidity and precipitation. The Drought Code (DC) captures the moisture 

content of deep, compacted organic soils and heavy surface fuels, and is calculated from temperature and 

precipitation. The three moisture codes are calculated on a daily basis using the previous day’s moisture codes and 

the current day’s weather. Each has a precipitation threshold below which small amounts of precipitation have no 30 

effect on the code, which are 0.5 mm for the FFMC, 1.5 mm for the DMC, and 2.8 for the DC. The three fire 

behaviour indices reflect the behaviour of a fire if it were to start. The Initial Spread Index (ISI) is driven by wind 

speed and FFMC and represents the ability of a fire to spread immediately after ignition. The Buildup Index (BUI) is 
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calculated from the DMC and DC and represents the total fuel available to burn. The Fire Weather Index (FWI) 

combines the ISI and BUI to provide an overall measure of fire danger. All indices are relative numerical measures, 35 

and interpreted differently in local fire environments. Technical details of the FWI System can be found in various 

technical reports (Dowdy et al. 2009; Van Wagner 1987), and the equation source code through publicly available 

repositories (Cantin 2016). 

 

FWI calculations require 12:00 local time 2m temperature and relative humidity, 10m wind speed, and 24-hour 40 

precipitation. Snow depth is also needed in cold regions to start and stop the FWI calculations. Because each day’s 

calculation requires the previous day’s moisture codes, weather records must be continuous and any missing data 

must be estimated (Lawson and Armitage 2008; Taylor and Alexander 2006). Too much missing weather data, can 

lead to errors that accumulate over time.  

 45 

A representative set of FWI adaptation approaches for different fire environments is listed in Table 1. When 

introduced into a new region, the FWI System is calibrated for local conditions, usually with FWI calculated from 

weather station data, but assembling the continuous hourly weather records need for FWI calculations can be hard. 

To that end, the Global Fire Weather Database (GFWED) provides global FWI data using a combination of 

meteorological reanalysis and forecasts, and precipitation estimates from rain gauges and satellites. The first version 50 

of GFWED was based on the original MERRA reanalysis, and evaluated by examining differences only between the 

Drought Code computed from weather stations and from gridded meteorological products for a small number of 

weather stations in representative fire environments (Field et al., 2015).  

 

The first goal of this paper is to compare all FWI System components calculated over a larger global weather station 55 

network to FWI fields calculated from the NASA Modern-Era Retrospective Analysis for Research and 

Applications version 2 (MERRA2) (Molod et al., 2015;Gelaro et al., 2017), and to understand how biases in the 

MERRA2 FWI are related to different weather inputs. This follows comparisons of FWI computed from Weather 

Research and Forecasting (WRF) high-resolution analysis fields to station data over New Zealand (Simpson et al., 

2014) and the McArthur Forest Fire Danger Index over Australia (Clarke et al., 2013), comparisons of FWI 60 

computed from station data and three reanalyses over the Iberian Peninsula (Bedia et al., 2012), comparisons of FWI 

computed from station data to high-resolution analyses over the US Great Lakes region (Horel et al., 2014), a first 

global comparison of FWI computed from station data to ERA-Interim reanalyses (Vitolo et al., 2019), and 

comparisons of FWI calculated from reanalysis, rain gauge and satellite precipitation estimates for a small number 

of recent fire seasons (Field, in press).  65 

 

The second goal is to evaluate the skill of experimental, short-term (8-day) FWI System forecasts computed from 

NASA GEOS-5 weather forecasts. The basic question here is: over different regions, how does fire weather forecast 

skill deteriorate at lead times of up to 8 days? This follows previous work to evaluate FWI from analyses for 

predicting global burned area (Di Giuseppe et al., 2016), smoke emissions for chemical weather forecasting for 3 70 
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months in 2013 (Di Giuseppe et al., 2018), 5 months in 2015 (Di Giuseppe et al., 2017), 5-day WRF forecasts of 

FWI and National Fire Danger Rating System components over Alaska in 2005 (Mölders, 2010), and 24h and 48h 

FWI forecasts over the US Great Lakes Region (Horel et al., 2014) for April to September 2012. The evaluation 

here is limited to the skill of the FWI forecasts compared to fire weather analyses, and not their skill in predicting 

fire activity or behaviour.  75 

2 Data and Methods 

GFWED FWI fields are computed from NASA MERRA2 reanalysis and GEOS-5 forecasts using the same approach 

described in Field et al. (2015). The exception is that unvegetated areas have been masked out using the GlobCover 

2009 land cover classification (Arino et al., 2012), rather than annual mean temperature and precipitation thresholds. 

Weather station data was obtained from the National Oceanographic and Atmospheric Administration’s National 80 

Center for Environmental Information (NCEI) Integrated Surface Database (ISD) of hourly and synoptic-frequency 

weather data (Smith et al., 2011). As of 2019, there are 29 780 uniquely-identified stations in the ISD, but many 

have long periods of missing data, or report only for a short time. To strike a balance between data completeness and 

coverage, stations were selected that had at least 90 hourly observations for least 90% of months over 2004-2018. 

This initial filter only considers monthly observation counts, and not their diurnal representativeness, whether the 85 

individual FWI weather input values are reported, or whether those values passed NCEI quality control.  

 

Hourly weather values were interpolated linearly from synoptic values, after excluding observations flagged by the 

NCEI as suspect or erroneous. Local 12:00 values were extracted from the interpolated hourly data with the 

requirement that there be actual observations within three hours before and three hours after 12:00 local time, so that 90 

12:00 estimates were not overly influenced by observations too early or too late in the day. Precipitation was totalled 

from 6, 12, 18 and 24-hour reports. Snow depth from ISD reports was supplemented with data from the Global 

Historical Climate Network (GHCN). For many stations, snow depth from ISD and GHCN is missing during the 

summer, rather than reported as 0. Non-reporting snow during summer was distinguished from stations where no 

snow occurs using the daily Aqua MODIS snow cover fraction MYD10C1 product (Hall and Riggs, 2016). 95 

Remaining missing temperature, relative humidity and windspeed values for FWI calculations were sampled from 

MERRA2 fields at each station’s location for the sake of continuing calculations. Missing 24-hour precipitation was 

taken from the CPC gridded daily precipitation estimate (Chen et al., 2008). 

 

Station-based calculations were again filtered for completeness, with the requirement that at least 80% of 100 

temperature, relative humidity and windspeed values be from observations rather than sampled from MERRA2, and 

that 50% of precipitation values be from observations rather than CPC, following filtering for the AgMERRA 

product (Ruane et al., 2014). After this requirement, there were 1746 stations (Figure 1), shown with the standard 

Global Fire Emissions Database (GFED) (van der Werf et al., 2017) regions used for regional analyses, and which 

are listed in Table 2. Stations are coloured by the starting month of their fire season, defined as the 4-month period 105 

with the highest average FWI. Coverage was best over the southern Canadian part of Boreal North America 
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(BONA), Temperate North America (TENA), Europe (EURO), the Central Siberian part of Boreal Asia (BOAS), 

Japan and the southern China regions of Central Asia (CEAS) and coastal Australia (AUST). Coverage was 

reasonable over Central America except for north-Central Mexico, and the Malaysian and western Indonesia part of 

Equatorial Asia (EQAS). Coverage was otherwise poor, notably over the fire prone regions of South America 110 

(SAM) such as the Mato Grosso of Brazil, all of Africa (AFR), Southeast Asia (SEAS) except for Thailand, central 

Asia, and western Russia. 

 

GFWED 8-day FWI forecasts calculated from GEOS-5 weather forecasts were evaluated for 2018, the first full year 

for which forecasts have been produced. Forecasts were analysed over the same Terrestrial Ecoregions of the World 115 

boundaries (Olson et al., 2001) as the fire-climate analysis of Abatzoglou et al. (2018), rather than GFED regions, 

which were judged to be too big, or state or provincial boundaries, which were judged to be too small.  

3 Results 

3.1 Examples from Canada and Spain 

To illustrate differences between the station and MERRA2-based weather inputs and FWI System component 120 

values, two examples of daily data are provided for weather stations in different fire environments during which 

there were significant fire events, and in countries where the FWI System is used operationally. 

 

Figure 2 shows the daily 12:00 local time 2m temperature (TEMP) and relative humidity (RH), 10m wind speed 

(WDSPD), 24-hour precipitation (PREC) and the individual FWI component values for Ft. McMurray, Alberta, in 125 

western Canada for 2016. The Ft. McMurray wildfire of May 2016 destroyed over 3000 structures in the city of Ft. 

McMurray and led to the largest evacuation in Canadian history.  Station-based FWI calculations began in mid-April 

after the snow melt, which was followed by warming and drying conditions through end of the month. The fire was 

first detected on May 1st when the FWI was 28, which would be classified as Very High in Alberta (Stocks et al., 

1989), and until May 8th varied between 40 to 46, which would be classified as Extreme. These conditions were 130 

driven by an absence of rain during the prior two weeks and low (< 30%) RH. The MERRA2-based FWI only 

marginally captured the extreme fire weather conditions, due primarily to a combination of too-late snow melt, too-

high RH during May, and too-low windspeeds. 

 

Figure 3 shows the daily weather and FWI values for Vigo in northwestern Spain over 2017. Beginning in April, the 135 

station-based DMC increased over the summer, punctuated by periodic decreases associated with small rain events. 

The DC increased more steadily, due to it being less sensitive to small amounts of rain. By October, BUI values 

exceeded 100, which would represent low fuel moisture content in heavy and medium-sized dead fuels, and a very 

dry landscape. The severe burning on October 15 was associated with FWI of 72 for the weather station data and 50 

from MERRA2, which would be classified as Extreme in southern Europe (Palheiro et al., 2006;San-Miguel-Ayanz 140 
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et al., 2013). The MERRA2-based calculations for Vigo captured the progression of seasonal fire weather much 

better than for Ft. McMurray. 

3.2 Global MERRA2 and station FWI comparison over 2004-2018 

3.2.1 FWI means and biases 

Figure 4 shows the mean values for each of the six FWI components calculated from ISD stations with sufficiently 145 

complete data over 2004-2018, calculated only over the local 4-month fire season beginning on the month shown in 

Figure 1. The FFMC (Figure 4a) generally has a mean FFMC greater than 75, with higher values seen over the 

western US, southern Europe, south-western Siberia, Thailand and most of Australia. Lower mean values are seen 

over the western and eastern Canadian coasts, the UK, northern Europe, southern China and the Maritime continent.  

The DMC (Figure 4b) mean values range from below 50 across most of Canada, the eastern US, north and central 150 

Europe, Siberia, China and the southeast coast of Australia, to above 300 over the western US and northern 

Australia. Patterns in the mean DC (Figure 4c) follow those of the DMC, but with a maximum of 1000 over the 

southwest US, southern Spain, and parts of Australia. The BUI (Figure 4e) has the same pattern as the DMC and 

DC, but over a range up to 350. The patterns of ISI (Figure 4d) and FWI (Figure 4f) follow those of the other 

indices, with maximum means of 25 and 60 respectively.  155 

 

Figure 5 shows the bias of MERRA2 FWI components relative to the station data over the local 4-month fire season, 

and Figure 6 shows the bias of the input weather variables. The FFMC (Figure 5a) had a median bias of -0.2 over all 

stations. This was a mix of the coherent low biases over the most of Canada, central America, northern Eurasia, the 

western Maritime Continent, and coastal Australia, with weak positive biases over the Canadian Plains and central 160 

Europe. Qualitatively, the spatial patterns in FFMC reflect the biases in TEMP (Figure 6a) and RH (Figure 6b). The 

median DMC bias was -6.1 (Figure 5b) which reflected strong negative biases over the western north America and 

northern Australia, with no comparable regions of coherent high bias, and no clear relationship to the patterns in the 

individual input variables. The DC (Figure 5c) had a median bias of -54.7, with strong low biases over the western 

US and the Australian interior, coherent but weaker low biases over Canada and most of Eurasia, and a slight but 165 

coherent high bias over the southeast US and southwestern Australia. Like the DMC, there was no clear association 

between DC biases and either the TEMP or PREC biases, but the low biases over the western US were consistent 

with too much snow (Figure 6e) and a shorter period of active FWI calculations (Figure 6f). The ISI (Figure 5d) is 

mostly biased low, and most strongly over the western US. There are areas of high ISI bias in central Canada, Spain, 

central Europe, Thailand, and southwest and northern Australia. The patterns in ISI bias weakly reflect those of the 170 

WDSPD (Figure 6c). The bias pattern in BUI (Figure 5e) is nearly identical to that of the DMC, and that of the FWI 

(Figure 5f) to the ISI. 

 

To quantify the relationship between MERRA2 FWI component biases and those of the input weather variables,   

https://doi.org/10.5194/nhess-2019-197
Preprint. Discussion started: 2 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 6 

Table 3 summarizes weather and FWI means for weather stations, MERRA2 biases, and the correlations between 175 

FWI component biases from Figure 5 and weather input biases from Figure 6. Globally, MERRA2 has a -0.3 °C 

temperature bias, a -0.6% RH bias, a -0.2 kph windspeed bias, a 0.6mm/day precipitation bias, 7.8% too many days 

with snow, and a 4.5%-day shorter fire season. To identify which individual weather bias might most influence FWI 

component biases, the interior values of Table 3 (in italics) show the correlations between biases in weather and 

biases in FWI components across stations. Biases in the FFMC are positively related to biases in TEMP (r=0.73) and 180 

negatively related to biases in RH (r=-0.72), and secondarily to PREC biases (r=-0.50), with little relation (r=0.17) 

to WDSPD biases. Globally, biases in the DC, DMC and BUI are not strongly related to biases in any individual 

weather input. Biases in the ISI are moderately related (r=0.56) to biases in the windspeed, with a slight negative 

relationship (r=-0.47) with RH. Biases in the FWI component are most strongly related to TEMP, RH and WDSPD, 

through the intermediate biases of the FFMC and the ISI.  185 

 

Globally-averaged FWI and biases obscure considerable regional variation in weather and FWI values, biases, and 

relationships to biases in the weather inputs. The same statistics shown in Table 3 were calculated across stations 

each of the GFED regions. Table 4 shows the mean station weather and FWI values, MERRA2-biases and bias 

correlations for the BONA, TENA, CEAM, SAM regions. Over BONA, the relationships between FFMC biases and 190 

weather biases were consistent with the global relationships, but stronger (r=0.82 for TEMP, r=-0.81 for RH, r=-0.59 

for PREC). Biases in the DMC and BUI were related to biases in TEMP, and the DC biases to biases in TEMP and 

PREC (r=-0.66). ISI biases were related to biases in TEMP and RH via the FFMC and to biases in WDSPD 

(r=0.67). Biases in the FWI were most strongly related to temperature biases (r=0.76) via the individual sub-

components, and also to RH and WDSPD. It should be noted that the agricultural regions of the Canadian Prairies 195 

are overrepresented in these estimates, and the wildfire-prone areas of northern Canada under-represented. Over 

TENA, the FWI components were also biased low, reflecting strong biases in the west compared to the east. The 

weather bias influence on FWI component biases was generally weaker than BONA, aside from a strong influence 

of RH bias (r=-0.83) on the FFMC. Biases in the FWI were most strongly (r=0.63) related to TEMP. There was a 

weak (r=0.46) relationship between DC biases and FIRESEAON, suggesting that too late a start in the DC 200 

calculations led to less ‘drought accumulation’ over the fire season, particularly in the western US. 

   

CEAM FFMC biases were most strongly related to PREC (r=-0.84) and RH (r=-0.68), which translated into strong 

bias relationship on the FWI for the RH (r=-0.82). The DMC, DC and BUI were biased low, but with only a weak 

(r=-0.52) influence from PREC biases, and no relationship to TEMP biases, due to less variation during the fire 205 

season. SAM biases were harder to quantify because of poor station coverage. Across the 21 stations that were 

available, there were strong low biases in all FWI components, which had similar relationships to weather input 

biases as CEAM. SNOWD and FIRESEASON were related to the DMC, DC and BUI, but this was due to a single 

outlying station at the Santiago airport in Chile (WMO ID 855740). 

 210 
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Table 5 shows mean and bias statistics for AFR, EURO, BOAS and CEAS. Like SAM, there were very few (n=10) 

stations over AFR. All FWI components were biased low, with FFMC and DC biases related to PREC biases, DMC, 

ISI and FWI most strongly related to RH biases, but with too few stations for these relationships to be considered 

robust. EURO had good station coverage spanning the different fire environments of the Mediterranean to 

Scandinavia. FWI component biases were negative, but lower in magnitude than globally. FFMC biases were 215 

strongly related to TEMP (r=0.78), RH (r=-0.80), PREC (r=-0.71), and weakly to FIRESEAON (r=0.55). There 

were moderate TEMP (r=0.51) and RH (r=-0.54) relationships with the DMC, and also between PREC biases and 

DC biases (r=-0.66), and with a weak (r=0.43) relationship to FIRESEAON. FWI biases were more strongly related 

to RH biases (r=-0.70) than to TEMP (r=0.57) and PREC (r=-0.52) biases.  

 220 

BOAS had low biases across all FWI components, but which were representative almost entirely of Siberia. FFMC 

biases were similarly related as EURO for biases in TEMP (r=0.75), RH (r=-0.86) and PREC (r=-0.74), and with no 

strong snow day or fire season length influence. TEMP, RH, PREC and FIRESEAON influences on the DMC, DC 

and BUI were comparable to EURO, and ISI biases had strong relationships with RH (r=-0.69) and WDSPD 

(r=0.63) biases. The strongest relationships with FWI biases were for RH biases (r=-0.71), PREC (r=-0.64) and 225 

TEMP (r=0.64). Stations over CEAS were primarily in southern China and Japan, and all FWI components were 

biased low except for the ISI. The FFMC biases were related to TEMP (r=0.76), RH (r=-0.72), with no strong 

relationships for DMC, DC or BUI biases, and moderate relationships for TEMP and RH for both the ISI and FWI. 

 

Over SEAS (Table 6), FWI component biases were more weakly low compared to other regions, and slightly high 230 

for the ISI and FWI, but reflect coverage primarily over Thailand, with scattered stations in Vietnam, Myanmar and 

Pakistan, and with no coverage over India or Bangladesh. FFMC biases were related to RH (r=-0.79) and PREC 

(r=0.76) biases. FWI biases were most strongly related to RH (r=-0.76) and TEMP (r=0.73) biases. The strong 

negative relationships between the DMC and BUI with FIRESEASON were due to outlier values over Pakistan and 

are not likely robust. Over the tropical EQAS region, low mean FWI values reflect tropical conditions, for which 235 

MERRA2 FWI component values were further biased low. Biases relationships were generally weaker than over 

SEAS, with RH biases having the strongest relationships to FFMC (r=-0.63) and ISI (r=-0.62) biases, and DC biases 

being moderately (r=-0.59) related to PREC biases.  Overall, the weak bias relationships reflect little spatial 

variation in the average FWI component values.  

 240 

AUST had good station coverage, showing high average FWI values in the interior and west coast, and the lower 

average values along the other coasts, Tasmania and New Zealand. Mean biases in FWI components were negative 

except for the FFMC, but smaller in magnitude than other regions due to smaller biases in the weather inputs. FFMC 

biases were strong related to TEMP (r=0.90) and RH (r=-0.82) biases. The strongest relationships with the FWI 

were with biases in TEMP (r=0.60) and RH (r=-0.59).  245 
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3.2.2 FWI temporal correlations 

To understand the degree to which MERRA2 FWI components capture daily changes in station FWI, Figure 7 

shows the correlation at each station between the daily station and MERRA2 FWI component values during each 

station’s 4-month fire season. The histogram inset in each panel shows the frequency distribution of the correlations 

across stations. The histograms also show the frequency distribution of correlations calculated using 3, 7 and 30-day 250 

averages of the daily time series, which reflects the time scales over which fire weather analyses are done. Figure 8 

is similar, but for the input weather variables.  

 

The MERRA2 and station FFMC (Figure 7a) are correlated at stations over northern midlatitudes (TENA and EUR), 

weakening somewhat over BONA and BOAS, and correlations are lower over the tropics, most clearly seen over 255 

Thailand, Malaysia and the Philippines. The median correlation across all stations increases from r=0.75 for daily 

FFMC to r=0.79 for 3-day averages, r=0.81 for 7-day averages, and r=0.83 for 30-day averages, and the frequency 

distribution becomes more left-skewed for longer averaging windows. Globally, the spatial correlation distribution 

most closely follows that of the correlation between MERRA2 and station RH (Figure 8b), as does the change in 

frequency distribution with averaging period, though with a progressively flatter peak for the RH. 260 

 

Correlations between daily station and MERRA2 DMC (Figure 7b) are lower than for the FFMC, with a median 

correlation of r=0.68 for the daily time series. Areas of low correlation for the DMC are over the central US, 

northern Canada, south-central Siberia, central China, Thailand and Malaysia. The DMC correlations are less 

sensitive to the averaging period than the FFMC, but increases to r=0.73 for a 30-day average. The DMC correlation 265 

pattern corresponds to that of the PREC correlation (Figure 8d). For different averaging periods, the change in 

frequency distributions of DMC correlations appears to be limited by that of the change in PREC correlations.  

 

DC correlations are higher than for the DMC (Figure 7c) for the daily time series, and are less strongly related 

spatially to those of PREC because of less sensitivity to individual precipitation events. Longer averaging periods 270 

have no effect on DC correlations because the DC is less sensitive to how the precipitation is distributed over time. 

ISI correlations (Figure 7d) are most closely related to WDSPD correlation patterns (Figure 8c), seen most clearly 

over North America and Australia. The change in frequency distribution of ISI correlations reflects those of the 

FFMC and WDSPD. The BUI (Figure 7e) correlation patterns for daily data follow those of the DMC, but are higher 

due to the influence of the DC. The FWI (Figure 7f) correlation patterns follow those of the ISI, as does the 275 

rightward shift in the frequency distribution of correlations with increasing averaging period.  

4 GEOS-5 FWI forecast evaluation for 2018 

4.1 Example for the 2018 fire season over central British Columbia, Canada 

The forecast evaluation focuses on the FWI component. To illustrate the performance of FWI forecasts over a single 

region, we use the severe 2018 fire season over west-central British Columbia (BC), Canada (Tollefson, 2018). The 280 
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FWI System is used operationally in BC, with prevention and pre-preparedness measures tied to joint BUI/FWI 

thresholds (Stocks et al., 1989). For simplicity, we interpret the 2018 FWI variation using the ‘marginal’ FWI 

thresholds. Figure 9 shows the 137 065 km2 Fraser Plateau and Basin Complex ecoregion from the Terrestrial 

Ecoregions of the World, where several of the largest fires burned. This corresponds roughly to the BC 

government’s Interior Plateau Region II, where an FWI of greater than 31 is considered extreme (Stocks et al., 285 

1989). For context, the 500 hPa heights for the first three weeks of August 2018 leading up to the peak in fire 

activity are also shown. The relevant feature is a persistent ridge of high pressure extending from the southwest US 

to the Yukon, which is associated with warm and dry conditions in BC, and, historically, higher fire activity in 

western Canada (Skinner et al., 1999). 

 290 

Figure 10a shows the daily MODIS active fire counts and GEOS-5 analysis FWI averaged over the Fraser Plateau 

and Basin Complex ecoregion. The FWI System calculations start up at the end of April after snow melt, and the 

FWI remains below 10 through May and June. The FWI increases over July and early August, and is punctuated by 

two rain events from which the FWI recovered after several days. Under warm and dry conditions, the FWI mostly 

remained above 20 for the first three weeks of August, during which several large fire complexes grew, shown by 295 

the increase in daily MODIS active fires, which peaked on August 22nd. 

 

Figure 10b shows the forecast FWI over the region at lead times of 1 to 8 days using the approach of Carbin et al. 

(2016). The FWI colour scale is similar to that of the Global Wildfire Information System 

(http://gwis.jrc.ec.europa.eu), which reflects a wider range than that over BC. The shaded FWI on the bottom row of 300 

the panel with lead-time 0 corresponds to the FWI time series in the top panel, and represents the forecast target on 

different days. Reading upward, each row shows the forecast with increasing lead time; a perfect forecast over lead 

times of up to 8 days would be shown by a vertical line with the same colour as that on the target date. 

 

For May and June, the forecasts capture the low FWI for lead times of up to 8 days. The observed increase in FWI 305 

mid-July is captured at lead times of up to 5 days, as is that at the end of the month. The low FWI of 10 at the 

beginning of August following a 1-day rain event is captured by the forecast up to 8 days in advance. At the end of 

the first week of August, there was lower FWI forecast between 4 and 5 days in advance, indicated by the isolated 

patch of blue, and which did not strongly verify. The forecasts captured the increase toward high (>20) FWI in mid-

August, and the peak FWI of 29 on August 22, when fire activity was at its highest. This was followed by lower 310 

FWI for September and October which was well-forecast, including several brief FWI calculation ‘shutdowns’ 

before the final shutdown at the end of October. During the May-October fire season, the correlation between the 

daily analysis and forecast FWI was r=0.96 at 2-days lead time, r=0.88 at 4-days lead time, r=0.82 at 6-days lead 

time, and r=0.68 at 8-days lead time.  
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4.2 Global FWI forecast correlations and biases 315 

The maps in Figure 11 show the correlation between analysis and forecast FWI at lead times of 1 to 8 days, for FWI 

values averaged over each of the 771 Terrestrial Ecoregions of the World, excluding unvegetated areas. For each 

ecoregion, only the four consecutive months with the highest mean FWI were considered. As with the comparison of 

station and MERRA2 FWI, this was done to reduce the influence of wet and dry seasonality in the tropics in the 

correlations, and to make for a more meaningful forecast comparison between regions with year-round versus 320 

partial-year fire seasons.  

 

At a lead time of 1 day, there is mostly perfect correlation between the forecast and analysis FWI across all 

ecoregions, with slightly lower values in the eastern US, southern South America, the Sahel, southern Africa, and 

South Asia. At a lead time of 3 days, correlations are less than 0.80 over parts of northern Canada, the southeast US, 325 

northern Africa and South Asia, but otherwise remain high. At a lead time of 5 days, there is a broad arc of low 

(r<0.50) correlation stretching across northern Canada, and lower correlations over the eastern US. Correlations also 

decrease over southern South America, southern Africa and northern Africa adjacent to the Sahara, Siberia, South 

Asia and the ecoregions in SEAS and EQAS along the Pacific Rim. At lead times of 7 and 8 days, there is a wide 

range of correlations between forecast and analysis FWI. Correlations are high (r > 0.80) over parts of the western 330 

US, central America and northern South America, central Africa, parts of the Mediterranean, and southern China 

and northern Southeast Asia, but are otherwise very low.  

 

Figure 12 shows the distribution of ecoregion correlations between forecast and analysis FWI at different lead times, 

organized by the GFED regions. The decay of forecast skill is captured by how much the distribution shifts leftward 335 

with increasing lead time. Over Boreal North America (BONA) and Boreal Asia (BOAS), there is a steady leftward 

shift in the distribution, and flattening of the distribution after a lead time of 4 days. The faster decay in forecast skill 

over cold regions is in part due to less variability in FWI and larger ecoregions with more within-region variation in 

FWI. Over Temperate North America (TENA) and Australia (AUST), there is a slower leftward shift in the 

distribution and sharper peaks around median correlations of 0.58 and 0.49, respectively. Over Central America 340 

(CEAM), South America (SAM) and Africa (AFR), by contrast, the forecast skill deteriorates more slowly, with 

median correlations of greater than 0.80 at lead times of 5 days. 

 

Figure 13 shows the bias between forecast and analysis FWI for each ecoregion. At high northern latitudes, there is 

no discernible systematic bias in the FWI forecasts for any lead time, but this is in part a function of the narrower 345 

FWI scale over those regions. Moving equatorward, the FWI forecasts are in general biased high, which is most 

apparent over the US, south-eastern Brazil, and South Asia. This bias increases with lead time, but is less apparent 

than the decay in correlation with lead time in Figure 12. Compared to the decay in correlation, the biases do not 

increase as significantly with lead time. Figure 14 shows the distribution of forecast biases across ecoregions with 

increasing lead time, organized by GFED region. Over BONA and BOAS, there is no systematic change in bias with 350 

lead time, but across all other ecoregions, the distribution of biases shifts rightward with increasing lead time.  
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The skill of the FWI forecasts will depend on the forecast skill for the underlying weather input values. There was 

no association between the regional differences in FWI correlation decay with lead time in Figure 11 and those for 

TEMP correlation, which decreased more slowly (not shown). The decrease in PREC forecast correlation is shown 355 

in Figure 15. There is some association between patterns in decrease in FWI forecast correlation and precipitation 

correlation, but the latter tends to decrease more quickly with increasing lead time. Over North America, for 

example, the north-eastward decrease in FWI skill is only weakly apparent in the precipitation map. There was a 

stronger association with RH forecast correlation, shown in Figure 16.  For lead times of greater than 4 days, there is 

a more apparent relationship between patterns of FWI and RH forecast skill at continental scales.  360 

5 Discussion 

Meteorological analyses provide the only practical means of making fire danger products at global scales, but these 

should be accompanied by estimates of these products’ biases relative to weather station data.  For the FWI fields 

calculated from MERRA2 weather inputs, the dependence of biases in the FWI components on weather inputs 

varied by component and region. Of any single input, biases in the TEMP and RH across stations tended to be 365 

correlated with biases in the FWI components most frequently across GFED regions. Systematic, persistent biases in 

the TEMP and RH will continually affect the moisture codes, whereas PREC, even if biased, is more episodic, and 

will also be buffered slightly by the precipitation thresholds for the wetting phases of the moisture codes, and in the 

FFMC, a fast recovery from individual precipitation events. Relationships between WDSPD biases and ISI biases 

were present in several regions (AUST, BOAS, CEAM, BONA), but with weaker relationships to FWI biases 370 

because of the influence of other inputs and intermediate FWI components. These biases should be taken account 

when using MERRA2 based FWI for fire-climate analyses, and should be the focus, alongside precipitation, of bias-

correction efforts in computing fire weather indices from analysis and forecast fields. Bias in the FIRESEAON 

length were related to biases in the DC over northern mid-latitudes, presumably because of less drying time over 

which the DC can increase during the fire season.  375 

 

The biases seen in MERRA2-based FWI were generally consistent with comparisons to station for other fire weather 

products, at least in sign. In comparing station to high-resolution analysis MacArthur Forest Fire Danger Index over 

south-eastern Australia, Clarke et al. (2013) found a change from positive to negative analysis field bias moving 

from the interior to the coast. Over that region, the FWI (Figure 5f) shows no positive bias inland, but the negative 380 

bias does strengthen toward the coast, due primarily to corresponding gradient toward stronger low wind-speed 

biases in MERRA2. Over the Great Lakes region, Horel et al. (2014) found that the FWI components calculated 

from high-resolution analysis fields were biased low except for the DMC, which was consistent with the biases in 

Figure 5. Over Spain, there was a change in FWI bias from high to low moving toward the Mediterranean coast 

(Figure 5f), which was also seen in Bedia et al. (2012) for 7 stations, particularly for FWI calculated from the 385 

National Centers for Environmental Prediction / National Center for Atmospheric Research reanalysis.  
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There are no global evaluations of short-term fire weather forecast skill against which the FWI forecasts can be 

compared, but several comparable regional studies have been conducted. Using high resolution WRF forecasts, 

Mölders (2010) found that FWI forecasts June of 2005 in the interior of Alaska were skilful, with little decrease in 390 

skill for leads of up to 5 days. The GEOS-5 based FWI forecasts showed a slight decrease over the ecoregions of 

southern Alaska, but also remained skilful at lead times of up to 5 days, presumably because of the ability of the 

GEOS-5 model to resolve large-scale weather systems arriving from the Pacific, but there was a significant drop in 

skill in terms of forecast-analysis correlations over this region for leads of 6-8 days, however. Horel et al. (2014) 

found that FWI forecasts over the US Great Lakes Region for the 2012 fire season, bias and RMSE of the forecasts 395 

relative to station data did not increase significantly for leads of 24- and 48-hours, consistent with the GEOS-5 based 

FWI forecasts over that region, which, compared to Alaska, remained skilful at longer lead times.  Freitas et al. 

(2018) compared the 500 hPa height global anomaly pattern correlations for lead times of up to 5 days. For either 

convective parameterization considered, there was a pronounced decrease in skill for forecast leads of 3-5 days 

compared to 1-2 days. To the extent that the local fire weather is controlled by the large-scale circulation, this is 400 

likely reflected in a similar drop in skill for many regions in Figure 11 and Figure 12 beyond lead times of 2 days, 

particularly in the extratropics. Although a seasonal time-scale, Bedia et al. (2018) found that seasonal FWI 

predictions over Europe using the ECMWF System 4 seasonal climate forecasts were controlled by the skill of 

relative humidity predictions, consistent with its importance over short forecasts examined here. 

 405 

There were unfortunately too few high-quality stations during the 2004-2018 period over SAM and AFR to reliably 

evaluate the performance of the FWI fields from MERRA2; future work would benefit from more weather station 

data over these regions, perhaps from secondary weather station networks. Forecast evaluation for 2018 provides an 

initial sense of the forecast skill; it will be important in future work to see if skill for different years is comparable, 

and also for more individual fire events. As the use of fire weather from global analysis and forecast fields becomes 410 

more widely used, systematic comparisons of different models will also be useful. 
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Table 2. Analysis regions adapted from the Global Fire Emissions Database (GFED) (van der Werf et al., 2017). The 
GFED Middle East region was excluded due to a lack of weather stations. GFED regions are shown in Figure 1. 

Region Description 

1. BONA Boreal North America 

2. TENA Temperate North America 

3. CEAM Central America 

4. SAM South America, combining GFED Northern and Southern Hemisphere South America 

5. AFR Africa, combining GFED Northern and Southern Hemisphere Africa 

6. EURO Europe 

7. BOAS Boreal Asia 

8. CEAS Central Asia 

9. SEAS Southeast Asia 

10. EQAS Equatorial Asia 

11. AUST Australia and New Zealand 
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 19 

Table 3. Weather input and FWI statistics for 1746 weather stations and MERRA2 reanalysis fields sampled at station 
locations for 2004-2018. The first row in the table is the mean for each weather input from the weather station data, and 
the second row is the mean MERRA2 bias relative to the station data. The first column is the mean FWI value across 
weather stations, and the second column is the mean MERRA2 bias relative to the station data. The interior table entries 
in italics are the correlations (for p < 0.05 only) between the FWI component biases and the weather input biases across 
stations. Means and biases at each station are calculated only over the local 4-month fire season.   

    

TEMP 

(oC) 

RH 

(%) 

WDSPD 

(kph) 

PREC 

(mm/d) 

SNOWD 

(%) 

FIRESEASON 

(%) 

Global n = 1746 STN MEAN 23.6 52 14.3 2.3 17 76.8 

  
STN MEAN  MERRA2 bias -0.3 -0.6 -0.7 0.5 7.8 -4.5 

 
FFMC 80.3 -1.3 0.73 -0.72 0.17 -0.50 

 
0.20 

 
DMC 67.3 -12.7 0.39 -0.32 

 
-0.14 

 
0.15 

 
DC 353 -64.3 0.30 -0.12 0.05 -0.37 -0.13 0.25 

 
ISI 8 -0.8 0.41 -0.47 0.56 -0.12 -0.11 0.17 

 
BUI 83.7 -15.3 0.41 -0.30 0.05 -0.20 

 
0.18 

 
FWI 19.7 -2.2 0.57 -0.60 0.46 -0.24 -0.13 0.23 
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Table 4. Same as Table 3, but for the BONA, TENA, CEAM and SAM regions.  

    

TEMP 

(oC) 

RH 

(%) 

WDSPD 

(kph) 

PREC 

(mm/d) 

SNOWD 

(%) 

FIRESEASON 

(%) 

BONA n = 267 STN MEAN 19.3 56.4 13.7 2.2 41.2 50.8 

  
STN MEAN  MERRA2 bias -0.6 -0.3 -0.9 0.9 11.4 -6.7 

 
FFMC 75.7 -2.1 0.82 -0.81 0.39 -0.59 -0.15 0.29 

 
DMC 34.9 -11.2 0.68 -0.56 0.23 -0.41 

 
0.26 

 
DC 253.5 -94.1 0.57 -0.37 0.25 -0.66 -0.17 0.34 

 
ISI 5.2 -0.9 0.66 -0.65 0.67 -0.27 -0.16 0.32 

 
BUI 47.3 -15.4 0.68 -0.54 0.23 -0.44 

 
0.30 

 
FWI 12 -3 0.76 -0.70 0.53 -0.35 -0.15 0.35 

          
TENA n = 401 STN MEAN 27.1 47.5 15.3 2.6 9.4 81.8 

  
STN MEAN  MERRA2 bias -0.4 0.4 -2.5 0.1 13.4 -8.7 

 
FFMC 83.3 -0.5 0.74 -0.83 0.33 -0.23 

  

 
DMC 85 -18 0.53 -0.25 0.12 -0.22 

 
0.25 

 
DC 364 -47 0.41 

  
-0.47 -0.32 0.46 

 
ISI 10.3 -2.2 0.36 -0.30 0.50 -0.14 

 
0.20 

 
BUI 100.5 -18.9 0.53 -0.22 0.12 -0.27 -0.10 0.29 

 
FWI 24 -3.7 0.63 -0.50 0.51 -0.31 -0.21 0.35 

          
CEAM n = 43 STN MEAN 28.7 50.5 13.6 1.2 0 99.2 

  
STN MEAN  MERRA2 bias 0 -8.2 -0.5 1.2 0.3 -0.1 

 
FFMC 86.6 -1 0.44 -0.68 0.42 -0.84 

  

 
DMC 154.1 -38.7 0.47 -0.52 

    

 
DC 659.9 -149.6 

   
-0.52 

  

 
ISI 10.1 0.1 0.48 -0.82 0.57 -0.33 

  

 
BUI 183 -45.6 0.41 -0.47 

 
-0.35 

  

 
FWI 30.2 -2 0.52 -0.82 0.50 -0.48 

  

          
SAM n = 21 STN MEAN 23.3 59.2 16.8 2.9 4.7 93 

  
STN MEAN  MERRA2 bias -0.2 -2.2 -2.4 2.4 3.8 -3.7 

 
FFMC 79.4 -5.5 0.52 -0.58 

 
-0.63 

  

 
DMC 38.5 -10.5 

    
-0.63 0.72 

 
DC 251 -96 

 
0.64 

   
0.45 

 
ISI 6.9 -1.6 0.45 -0.64 0.58 

   

 
BUI 51.4 -17.4 

    
-0.70 0.80 

 
FWI 14.6 -3.9 0.54 -0.60 0.45 
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Table 5. Same as Table 3, but for the AFR, EURO, BOAS and CEAS regions. 

    

TEMP 

(oC) 

RH 

(%) 

WDSPD 

(kph) 

PREC 

(mm/d) 

SNOWD 

(%) 

FIRESEASON 

(%) 

AFR n = 10 STN MEAN 28.6 67 10.2 2.4 0 98.8 

  
STN MEAN  MERRA2 bias -1.5 -0.1 -1.2 1.1 0 0.7 

 
FFMC 79.7 -6.8 

   
-0.88 

  

 
DMC 40.3 -18.4 

 
-0.67 

    

 
DC 329.3 -93.5 

   
-0.91 

  

 
ISI 3.8 -1.6 0.77 -0.82 0.72 

   

 
BUI 57.5 -25.7 

      

 
FWI 10.6 -5.3 0.63 -0.79 

    

          
EURO n = 228 STN MEAN 21.4 57.6 14.6 1.9 17.4 74.5 

  
STN MEAN  MERRA2 bias 0 -2.1 -0.2 0.3 7.9 -4.5 

 
FFMC 77.9 -0.5 0.78 -0.80 

 
-0.71 -0.40 0.55 

 
DMC 58.5 -3.8 0.51 -0.54 

 
-0.33 

 
0.19 

 
DC 357.8 -37.8 0.53 -0.43 

 
-0.66 -0.28 0.43 

 
ISI 5.6 -0.2 0.45 -0.58 0.44 -0.45 

 
0.16 

 
BUI 75.1 -5.5 0.55 -0.55 

 
-0.42 

 
0.26 

 
FWI 15.3 -0.4 0.57 -0.70 0.24 -0.52 -0.15 0.27 

          
BOAS n = 161 STN MEAN 18.6 56.8 10.3 2.3 51.3 42.6 

  
STN MEAN  MERRA2 bias -0.4 0.7 0.8 0.4 8.1 -4.7 

 
FFMC 74 -2 0.75 -0.86 0.36 -0.74 0.29 -0.16 

 
DMC 26.9 -5.8 0.70 -0.71 

 
-0.65 

  

 
DC 217.9 -47.4 0.54 -0.27 0.17 -0.72 -0.38 0.46 

 
ISI 3.7 -0.3 0.57 -0.69 0.63 -0.58 0.27 

 

 
BUI 36.7 -7.7 0.71 -0.67 0.16 -0.70 

  

 
FWI 8.4 -1.3 0.64 -0.71 0.52 -0.64 

  

          
CEAS n = 169 STN MEAN 23.1 56.2 11.1 3.6 14.8 77.2 

  
STN MEAN  MERRA2 bias -0.4 0 2.7 1.1 11 -7.1 

 
FFMC 76.2 -1 0.76 -0.72 0.19 -0.53 

 
0.25 

 
DMC 29.5 -8.5 0.44 -0.23 

 
-0.18 

  

 
DC 179.1 -61.5 

 
0.26 

 
-0.39 -0.32 0.37 

 
ISI 4.8 0.1 0.56 -0.66 0.49 -0.27 

  

 
BUI 38.3 -11.5 0.39 

  
-0.24 

 
0.19 

 
FWI 10.4 -1.6 0.64 -0.62 0.32 -0.32 
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Table 6. Same as Table 3, but for the SEAS, EQAS, and AUST regions. 

    

TEMP 

(oC) 

RH 

(%) 

WDSPD 

(kph) 

PREC 

(mm/d) 

SNOWD 

(%) 

FIRESEASON 

(%) 

SEAS n = 63 STN MEAN 29.4 56.5 8.2 2 0 99 

  

STN 

MEAN  MERRA2 bias -0.4 -4.9 3.2 0.5 0.1 0.4 

 
FFMC 83.8 -0.3 0.67 -0.79 0.29 -0.76 

 
-0.35 

 
DMC 77.7 -1 0.60 -0.54 

 
-0.64 0.35 -0.75 

 
DC 372.6 -12.7 0.53 -0.42 

 
-0.63 

 
-0.57 

 
ISI 5.3 1.6 0.67 -0.71 0.55 -0.49 

  

 
BUI 95.7 -1.9 0.61 -0.53 

 
-0.65 0.28 -0.72 

 
FWI 17.2 2.8 0.73 -0.76 0.36 -0.69 

 
-0.38 

          
EQAS n = 39 STN MEAN 30.2 68.5 9.6 6.5 0 99.1 

  

STN 

MEAN  MERRA2 bias -2.3 6.8 -1.5 2.1 0 0.3 

 
FFMC 72.8 -14.8 0.62 -0.63 0.59 

   

 
DMC 14.8 -9 0.39 -0.39 

    

 
DC 110.9 -36.6 0.33 

  
-0.59 

  

 
ISI 2.8 -1.7 0.51 -0.62 0.39 

   

 
BUI 20.6 -11.7 0.39 -0.32 

 
-0.37 

  

 
FWI 5 -3.5 0.37 -0.43 

    

          
AUST n = 344 STN MEAN 24.4 42.6 18.7 1.2 0.2 97.4 

  

STN 

MEAN  MERRA2 bias 0.3 -1.2 -1.6 0.3 0.5 0.9 

 
FFMC 86.3 0.1 0.90 -0.82 

 
-0.50 

 
0.68 

 
DMC 110.8 -18.2 0.44 -0.52 -0.32 

 
0.15 0.18 

 
DC 554.4 -87.5 0.28 -0.22 

 
-0.59 

 
0.33 

 
ISI 13.8 -0.8 0.46 -0.45 0.64 -0.23 

  

 
BUI 137.5 -21.5 0.47 -0.52 -0.28 -0.22 0.14 0.24 

 
FWI 34.9 -2.6 0.60 -0.59 0.50 -0.37 

 
0.19 
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Figures 

 
Figure 1. National Centers for Environmental Information (NCEI) Integrated Surface Database (ISD) stations with at 
least 80% completeness of 12:00 local time observations of 2m temperature (TEMP) and 2m relative humidity (RH), and 
50% completeness of daily total precipitation (PREC) over 2004-2018. Stations are coloured by the starting month of 
their 4-month peak fire weather season. Global Fire Emissions Database (GFED) regions listed in Table 2 are indicated 
by the labels and shading. 
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Figure 2. Daily weather input and FWI System component values for Ft. McMurray, Alberta, Canada (WMO ID 715850, 
WBAN 99999, 56.65N, 111.22W) for 2016.  
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Figure 3. Same as Figure 2, but for Vigo in northwestern Spain (WMO ID 080450, WBAN 99999, 42.232N 8.627W) 
during 2017.  
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 31 

 
Figure 9. Average GEOS-5 analysis 500 hPa heights (dam) over Canada and the US from August 1-August 21, 2018. The 
area in red is the Fraser Plateau and Basin Complex ecoregion from the Terrestrial Ecoregions of the World. 
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Figure 10. a) daily MODIS active fire totals (>80% confidence only) and FWI calculated from GEOS-5 analysis field averaged 
over the Fraser Plateau and Basin Complex ecoregion in Figure 9. b) forecasts of the FWI at lead times of up to 8 days. The FWI 
in the time series of the top panel corresponds to the lead-0 row at the bottom of the coloured plot, separated from the forecasts by 
the white horizontal line. Missing FWI values in both panels indicate that FWI calculations have stopped due to cold temperatures 
or snow cover. 
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Figure 11. Correlation (r) between daily analysis and forecast FWI for 2018 at lead times of 1 to 8 days, for GEOS-5 grid points 
averaged within each of 771 Terrestrial Ecoregions of the World regions. Correlations are calculated only over the local fire 
season in each ecoregion, defined as the four-month period with the highest mean FWI.  
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Figure 12. Distributions of correlations between daily GEOS-5 forecast and analysis FWI at different lead times for ecoregions in 
each GFED region.  
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Figure 13. Same as Figure 11, but for the FWI bias (forecast-analysis).  
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Figure 14. Same as Figure 12, but for forecast biases. 
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Figure 15. Same as Figure 11, but for precipitation (PREC).  
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Figure 16. Same as Figure 11, but for relative humidity (RH). 
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